

	ELECTROTECNIA
Apellidos	Nombre
DNI	Fecha

- 1. Un motor de corriente continua con excitación en derivación, se encuentra conectado a una línea de 600 V y 138 A, produciendo en el eje una potencia de 100 CV y una velocidad de 1200 r.p.m.. Si la resistencia del inducido es Ri=0,1 Ω y la de excitación Rex= 600 Ω , calcular: (2,5 puntos)
 - a) Rendimiento en las condiciones de plena carga.
 - b) Dibujar el esquema y hallar la fuerza contraelectromotriz.
 - c) Par motor.
- 2. Dado el circuito de la figura, calcula: (2,5 puntos)
 - a) La intensidad que recorre cada una de las ramas
 - b) La tensión entre los nudos b y c.
 - c) La potencia que consume la resistencia R₃.

$$R_1 = R_2 = 100 \Omega$$

 $R_3 = R_4 = R_5 = 150 \Omega$
 $E_1 = 10 V = E_2 = 20 V = E_3 = 30 V$

- 3. En un circuito RLC serie, el valor de la resistencia es de 100 Ω , la autoinducción de la bobina 0,10 H y el condensador tiene una capacidad de 20 μ F. Calcula: (2,5 puntos)
 - a) La intensidad de corriente que circula en el circuito cuando se conecta a una tensión de U = 220 V y 50 Hz.
 - b) El factor de potencia resultante.
 - c) Las potencias aparente, activa y reactiva.

- 4. A una línea trifásica de tensión de línea 380 V y f=50 Hz, se conecta un receptor que consume una potencia de 3.8 KW con un $cos\phi=0.85$ inductivo, calcular: (2,5 puntos)
- a) Triángulo de potencias.
- b) Capacidad de cada condensador de la batería de condensadores, a conectar en triángulo, necesaria para elevar el cosφ a 0,96.